The histone deacetylase inhibitor valproic acid alters growth properties of renal cell carcinoma in vitro and in vivo.
نویسندگان
چکیده
Histone deacetylase (HDAC) inhibitors represent a promising class of antineoplastic agents which affect tumour growth, differentiation and invasion. The effects of the HDAC inhibitor valproic acid (VPA) were tested in vitro and in vivo on pre-clinical renal cell carcinoma (RCC) models. Caki-1, KTC-26 or A498 cells were treated with various concentrations of VPA during in vitro cell proliferation 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and to evaluate cell cycle manipulation. In vivo tumour growth was conducted in subcutaneous xenograft mouse models. The anti-tumoural potential of VPA combined with low-dosed interferon-alpha (IFN-alpha) was also investigated. VPA significantly and dose-dependently up-regulated histones H3 and H4 acetylation and caused growth arrest in RCC cells. VPA altered cell cycle regulating proteins, in particular CDK2, cyclin B, cyclin D3, p21 and Rb. In vivo, VPA significantly inhibited the growth of Caki-1 in subcutaneous xenografts, accompanied by a strong accumulation of p21 and bax in tissue specimens of VPA-treated animals. VPA-IFN-alpha combination markedly enhanced the effects of VPA monotherapy on RCC proliferation in vitro, but did not further enhance the anti-tumoural potential of VPA in vivo. VPA was found to have profound effects on RCC cell growth, lending support to the initiation of clinical testing of VPA for treating advanced RCC.
منابع مشابه
Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line
Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...
متن کاملEffects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملEffects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science
Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...
متن کاملEffect of valproic acid on SOCS1, SOCS3, JAK1, JAK2, STAT3, STAT5A, and SOCS5B in hepatocellular carcinoma HepG2 cell line
Background and aim: Aberrant activation of diverse intracellular signaling pathways involved in differentiation, cell growth, apoptosis. These pathways include known oncogenic pathways such as Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. The JAK/STAT signaling pathway plays an important role in many cellular functions. This pathway can be activated by variou...
متن کاملResistance after Chronic Application of the HDAC-Inhibitor Valproic Acid Is Associated with Elevated Akt Activation in Renal Cell Carcinoma In Vivo
Targeted drugs have significantly improved the therapeutic options for advanced renal cell carcinoma (RCC). However, resistance often develops, negating the benefit of these agents. In the present study, the molecular mechanisms of acquired resistance towards the histone deacetylase (HDAC) inhibitor valproic acid (VPA) in a RCC in vivo model were investigated. NMRI:nu/nu mice were transplanted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cellular and molecular medicine
دوره 13 8B شماره
صفحات -
تاریخ انتشار 2009